Abstract

It has been reported that allergen dosage can impact the differentiation of dendritic cells (DCs)-mediated T cells. However, the mechanisms of such dose-dependent differentiation are poorly understood. In this study, bone marrow-derived immature DCs stimulated with Ovalbumin (OVA) of different concentrations (0, 10, 100, 1000, 10000μg/ml, respectively). DCs were then co-cultured with naïve T cells. RNA-sequencing detection and DNA methylation of DCs were performed. We show that when DCs were stimulated with low-dose (10μg/ml), 77 genes were up-regulated and 87 genes down-regulated. Most activated genes were related to ribosome synthesis and ion channel inhibition. At the medium-dose (100μg/ml), 339 genes were up-regulated and 168 genes down-regulated. Most activated genes involved cytokine synthesis and regulation of immune responses. At high-dose (10000μg/ml), 2497 genes were up-regulated and 1156 genes down-regulated. TNF signaling pathway, NF-kappa B signaling pathway, antigen processing and presentation signaling pathway were mostly up-regulated. The related co-stimulators, co-inhibitory molecules, inhibitory cytokines, negative regulating enzymes were highly expressed. The monocarbate, coenzyme, fatty acid, glucolipid, starch, sucrose and other metabolism-related signaling pathways were down-regulated. The profiles of DNA methylation and RNA synthesis of DCs varied with different doses of OVA, which serves to induce T cells to differentiate in various directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call