Abstract

First-principles band structure calculations for large supercells of Ba${}_{2}$CuO${}_{4\ensuremath{-}\ensuremath{\delta}}$ and La${}_{2}$CuO${}_{4\ensuremath{-}\ensuremath{\delta}}$ with different distributions and concentrations of oxygen vacancies show that the effective doping on copper sites strongly depends on where the vacancy is located. A vacancy within the Cu layer produces a weak doping effect while a vacancy located at an apical oxygen site acts as a stronger electron dopant on the copper layers and gradually brings the electronic structure close to that of La${}_{2\ensuremath{-}x}$Sr${}_{x}$CuO${}_{4}$. These effects are robust and only depend marginally on lattice distortions. Our results show that deoxygenation can reduce the effect of traditional La/Sr or La/Nd substitutions. Our study clearly identifies location of the dopant in the crystal structure as an important factor in doping of the cuprate planes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.