Abstract

Simple SummaryHoverflies and bees play a key role in plant pollination. The increasing concern about pollinator reduction forces the planning of a sampling monitoring scheme to evaluate the change in the populations of these important insects. The present research provides baseline data about the distribution of hoverflies and bees in the Dolomiti Bellunesi National Park (Northeastern Italy). The hoverfly community shows a unimodal distribution with peak at middle elevation, while bees display a linear reduction in richness and abundance with increasing altitude. Both hoverfly and bee β-diversity at high altitude is dominated by species turnover more than by nestedness.Hoverflies (Diptera: Syrphidae) and bees (Hymenoptera: Anthophila) are two key taxa for plant pollination. In the present research, the altitudinal distribution of these taxa was studied along two gradients (elevation range: 780–2130 m) in the Dolomiti Bellunesi National Park (Northeastern Italy). Pan traps were used as a sampling device to collect both hoverflies and bees. Other than altitude, the effect of landscape complexity and plant diversity were considered as potential predictors of hoverfly and bee richness and abundance along the two gradients. A total of 68 species of hoverflies and 67 of bees were collected during one sampling year, confirming the efficacy of pan traps as a sampling device to study these taxa. Altitude was the main variable affecting both hoverfly and bee distribution. The two taxa show different distribution patterns: hoverflies have a unimodal distribution (richness and abundance) with peak at middle altitude (1500 m), while bees have a monotonic decline (richness and abundance) with increasing altitude. Both hoverfly and bee populations change with the increasing altitude, but the change in hoverflies is more pronounced than in bees. Species turnover dominates the β-diversity both for hoverflies and bees; therefore, the hoverfly and bee communities at higher altitudes are not subsamples of species at lower altitude but are characterized by different species. This poses important conservation consequences. Some rare species, typical of an alpine habitat were recorded; the present research represents important baseline data to plan a monitoring scheme aimed at evaluating the effect of climate change on pollinators in these fragile habitats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call