Abstract

Chalcogenide glasses are known for their large transparency in the mid-infrared (Mid-IR) and their high nonlinear optical properties. Indeed, chalcogenide glasses can present a high non-linear coefficient (n2), 100 to 1000 times larger than for silica glass, depending on the composition. An original way to obtain fibers is to design microstructured optical fibers (MOFs). These fibers present unique optical properties thanks to the high degree of freedom in the design of their geometrical structure. Various chalcogenide MOFs operating in the mid-IR range have been elaborated in order to associate the high nonlinear properties of these glasses and the original MOF properties. Different glass compositions and different designs have been achieved depending on the intended application. Indeed, chalcogenide MOFs might lead to new devices with unique optical properties in the Mid-IR domain like multimode or endlessly single mode transmission of light, small or large mode area fibers, non-linear properties for wavelength conversion or generation of supercontinuum sources. In the 1-12 µm window, single mode fibers, polarization maintaining fibers and exposed core fibers have been realized for Gaussian beams propagation and sensors applications. In this context, different applications such as Brillouin laser, all optical demultiplexing, mid-IR supercontinuum generation, quantum cascade laser pigtailing and mid-IR spectroscopy will be exposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.