Abstract
HES-1 is a transcriptional repressor of the basic helix-loop-helix (bHLH) family and one of the main downstream effectors in Notch signaling. Its domain architecture is composed of a bHLH region, an Orange domain, and a poorly characterized C-terminal half. We show that different degrees of structural order are present in the different regions of HES-1. The isolated bHLH domain is only marginally stable in solution, and partially folds upon dimerization. Binding to DNA promotes folding, stabilization, and protection from proteolysis of the bHLH domain. The Orange domain, on the contrary, is well folded in all conditions, forms stable dimers, and greatly increases protein resistance to thermal denaturation. The isolated proline-rich C-terminal region is mainly disordered in solution, and remains unstructured also in the full length protein. Measurements of binding constants show that HES-1 recognizes dsDNA synthetic oligonucleotides corresponding to several functional DNA targets with high affinity, but with relatively little specificity. We propose that order/disorder transitions in the different domains are associated not only with binding to DNA, but also with protein homo- and hetero-dimerization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.