Abstract

Previously, we showed that serum and monocytes from patients with CF exhibit an enhanced NLRP3-inflammasome signature with increased IL-18, IL-1β, caspase-1 activity and ASC speck release (Scambler et al. eLife 2019). Here we show that CFTR modulators down regulate this exaggerated proinflammatory response following LPS/ATP stimulation. In vitro application of ivacaftor/lumacaftor or ivacaftor/tezacaftor to CF monocytes showed a significant reduction in IL-18, whereas IL-1β was only reduced with ivacaftor/tezacaftor. Thirteen adults starting ivacaftor/lumacaftor and eight starting ivacaftor/tezacaftor were assessed over three months. Serum IL-18 and TNF decreased significantly with treatments, but IL-1β only declined following ivacaftor/tezacaftor. In (LPS/ATP-stimulated) PBMCs, IL-18/TNF/caspase-1 were all significantly decreased and IL-10 was increased with both combinations. Ivacaftor/tezacaftor alone showed a significant reduction in IL-1β and pro-IL-1β mRNA. This study demonstrates that these CFTR modulator combinations have potent anti-inflammatory properties, in addition to their ability to stimulate CFTR function, which could contribute to improved clinical outcomes.

Highlights

  • Cystic fibrosis (CF) is characterised by repeated pulmonary infections and disordered innate immune-driven inflammation

  • We have previously established that monocytes isolated from clinically stable ‘drug-naıve’ CF patients have an increased secretion of IL-18 and IL-1b when compared to healthy control (HC) monocytes

  • Using monocytes isolated from clinically stable patients homozygous for the common Phe508del CF mutation, we examined whether the in vitro application of clinically approved CFTR modulator combinations (IVA/LUM and IVA/TEZ), could regulate IL-18 and IL-1b levels

Read more

Summary

Introduction

Cystic fibrosis (CF) is characterised by repeated pulmonary infections and disordered innate immune-driven inflammation. The relationship between these two key drivers of disease progression remain poorly understood. We and others have recently provided evidence supporting the hypothesis that the NLRP3-inflammasome is a key regulator of inflammation in CF (McElvaney et al, 2019; Peckham et al, 2017; Scambler et al, 2019). We observed CF-specific increases in IL-18, IL-1b, caspase-1 activity, in addition to ASC-speck release, that were all reversed by pre-treatment with epithelial sodium channel (ENaC) and NLRP3-inflammasome inhibitors (Peckham et al, 2017; Scambler et al, 2019).

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.