Abstract
Inconsistent response in freezing of gait (FOG) with levodopa treatment or STN DBS makes the pathogenesis difficult to understand. We studied brain areas associated with the expression of STN DBS effect on parkinsonian motor deficits and FOG. Ten Parkinson's disease patients with typical FOG were included. One month before STN DBS, we performed [(18)F]-deoxyglucose PET scans and measured the UPDRS motor and modified FOG (mFOG) scores during levodopa off and on periods. At two months after STN DBS, same rating scores were measured. The percentage improvement of mFOG and UPDRS motor scores by STN DBS during levodopa off period was calculated. We searched for brain areas in which glucose metabolism correlated with the improvement of mFOG and UPDRS motor scores by DBS. During levodopa off period, STN DBS improved the UPDRS motor scores by 32.3% and the mFOG scores by 56.6%. There was no correlation between the improvements of both scores. The improvement of UPDRS motor score by DBS correlated with the metabolic activities of rostral supplementary motor area (Brodmann's area 8; BA8), anterior cingulate cortex (BA32), and prefrontal cortex (BA9). On the other hand, there was a positive correlation between the improvement of mFOG score by DBS and the metabolic activity of the parietal, occipital, and temporal sensory association cortices. In conclusion, dysfunction of different cerebral cortical areas limits the beneficial effects of DBS on parkinsonian motor deficits and FOG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.