Abstract

This study investigates the allocation of allochthonous organic carbon (AlloOC) to pelagic respiration and biomass production in unproductive lakes. Metabolic process rates and stable isotopic composition (δ13C) of crustacean zooplankton and respired CO2 were measured in the epilimnion of 13 forest lakes in northern Sweden. The δ13C of zooplankton was low (−31.2 to −38.0‰) compared to that of respired CO2 (−28.4 to −30.6‰), implying that the relative importance of AlloOC was lower for zooplankton (ca 40%) than for respiration (ca 80%). Combining δ13C and carbon flux data revealed that a large amount of metabolized AlloOC was lost in respiration, compared to the amount transferred to zooplankton (<3%). Thus, despite large respiratory losses, AlloOC was still important for zooplankton growth, implying a high supply of AlloOC in comparison to phytoplankton generated organic carbon in the lakes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.