Abstract

BackgroundWith the introduction of an add-on handcycle, a crank system that can be placed in front of a wheelchair, handcycling was made widely available for daily life. With it, people go into town more easily, e.g. to do groceries; meet up with friends, etc. They have more independency and can be socially active. Our aim is to explore some settings of the handcycle, so that it can be optimally used as a transportation device. Therefore, the effects of cadence and added resistance on gross mechanical efficiency and force application during sub-maximal synchronous handcycling were investigated. We hypothesized that a cadence of 52 rpm with a higher resistance (35 W) would lead to a higher gross mechanical efficiency and a more tangential force application than a higher cadence of 70 rpm and no extra resistance (15 W).MethodsTwelve able-bodied men rode in an instrumented add-on handcycle on a motorized level treadmill at 1.94 m/s. They performed three sessions of three four-minute blocks of steady state exercise. Gear (70, 60 and 52 rpm) was changed in-between the blocks and resistance (rolling resistance +0 W, +10 W, +20 W) was changed across sessions, both in a counterbalanced order. 3D force production, oxygen uptake and heart rate were measured continuously. Gross mechanical efficiency (ME) and fraction of effective force (FEF) were calculated as main outcomes. The effects of cadence and resistance were analyzed using a repeated measures ANOVA (P<0.05) with Bonferroni-corrected post-hoc pairwise comparisons.ResultsWith a decrease in cadence a slight increase in ME (70 rpm: 5.5 (0.2)%, 60 rpm: 5.7 (0.2)%, 52 rpm: 5.8 (0.2)%, P = 0.008, η2p = 0.38), while an increase in FEF (70 rpm: 58.0 (3.2)%, 60 rpm: 66.0 (2.8)%, 52 rpm: 71.3 (2.3)%, P<0.001, η2p = 0.79) is seen simultaneously. Also with an increase in resistance an increase in ME (+0 W: 4.0 (0.2)%, +10 W: 6.0 (0.3)%, +20 W: 7.0 (0.2)%, P<0.001, η2p = 0.92) and FEF (+0 W: 59.0 (2.9)%, +10 W: 66.1 (3.4)%, +20 W: 70.2 (2.4)%, P<0.001, η2p = 0.56) was found.InterpretationA cadence of 52 rpm against a higher resistance of about 35 W leads to a more optimal direction of forces and is more mechanically efficient than propelling at a higher cadence or lower resistance. Therefore, changing gears on a handcycle is important, and it is advised to keep the linear hand velocity relatively low for locomotion purposes.

Highlights

  • Manual wheelchair users mostly depend on hand-rim propulsion for their mobility

  • Our aim is to explore some settings of the handcycle, so that it can be optimally used as a transportation device

  • We hypothesized that a cadence of 52 rpm with a higher resistance (35 W) would lead to a higher gross mechanical efficiency and a more tangential force application than a higher cadence of 70 rpm and no extra resistance (15 W)

Read more

Summary

Introduction

Manual wheelchair users mostly depend on hand-rim propulsion for their mobility. Indoors, this wheelchair type is very useful, due to its maneuverability. Hand-rim propulsion has a low mechanical efficiency and can often contribute to overuse injuries around the shoulder joint [1,2]. Due to the lower external force production at the crank (both mean and peak force), the glenohumeral contact forces and muscle forces around the shoulder joint are lower in handcycling when compared at identical sub-maximal mean external power output [4]. The effects of cadence and added resistance on gross mechanical efficiency and force application during sub-maximal synchronous handcycling were investigated. We hypothesized that a cadence of 52 rpm with a higher resistance (35 W) would lead to a higher gross mechanical efficiency and a more tangential force application than a higher cadence of 70 rpm and no extra resistance (15 W)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call