Abstract

Understanding the dynamics of direct electrospinning is the key to control fiber morphologies that are critical for the development of new electrospinning methods and novel materials. Here, we propose the theory for direct electrospinning based on theories for (liquid) and experimentally test it. For the experiments, the buckling of microscale liquid ropes formed from polymer solutions is studied systematically using three different electrospinning setups and for different polymer concentrations. We show that different buckling regimes exist, whose dynamics are governed by an interplay of electrical, inertial, and viscous forces, and that three different buckling regimes emerge depending on the dominant forces. For low polymer concentrations, we observe an inertial regime similar to that observed for viscous liquid ropes at high velocities. By increasing the polymer concentration and consequently decreasing the rope velocity, we enter an inertial-electrical regime for which discontinuities occur in the buckling frequency as a function of applied voltage. These observations can be accounted for quantitatively by replacing the gravitational forces in viscous rope coiling theory with the electrical forces of our electrospinning experiment. Finally, for the highest polymer concentration, we observe a purely electrical regime for a solidified rope; this regime is well described by elastic rope coiling theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.