Abstract
To sustain growth, the catabolic formation of the redox equivalent NADPH must be balanced with the anabolic demand. The mechanisms that ensure such network-wide balancing, however, are presently not understood. Based on 13C-detected intracellular fluxes, metabolite concentrations, and cofactor specificities for all relevant central metabolic enzymes, we have quantified catabolic NADPH production in Agrobacterium tumefaciens, Bacillus subtilis, Escherichia coli, Paracoccus versutus, Pseudomonas fluorescens, Rhodobacter sphaeroides, Sinorhizobium meliloti, and Zymomonas mobilis. For six species, the estimated NADPH production from glucose catabolism exceeded the requirements for biomass synthesis. Exceptions were P. fluorescens, with balanced rates, and E. coli, with insufficient catabolic production, in which about one-third of the NADPH is supplied via the membrane-bound transhydrogenase PntAB. P. versutus and B. subtilis were the only species that appear to rely on transhydrogenases for balancing NADPH overproduction during growth on glucose. In the other four species, the main but not exclusive redox-balancing mechanism appears to be the dual cofactor specificities of several catabolic enzymes and/or the existence of isoenzymes with distinct cofactor specificities, in particular glucose 6-phosphate dehydrogenase. An unexpected key finding for all species, except E. coli and B. subtilis, was the lack of cofactor specificity in the oxidative pentose phosphate pathway, which contrasts with the textbook view of the pentose phosphate pathway dehydrogenases as being NADP+ dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.