Abstract

The influence of base composition (and sequence) on the process of interaction between synthetic polynucleotides and spermine, has been investigated using ultraviolet (including second derivative) spectroscopy, and electric dichroism. Different binding modes of spermine to poly(dG-dC) as compared to A-T containing polynucleotides, were evidenced. An interaction with the N7 and O6 of guanine is probably partially involved in the former case while simple electrostatic interaction with the phosphate groups would dominate in the latter. In the intermediate binding range (spermine over DNA phosphate molar ratios Sp/P of the order of 0.1 to 0.2), the complexes with poly(dA).poly(dT) and those with poly(dA-dT) displayed an important contribution of a permanent dipole moment to the orientation mechanism, as detected by the application of bipolar pulses in electric dichroism experiments. Just prior to precipitation (at Sp/P slightly larger than 0.3), these polynucleotides show electric dichroism and relaxation times characteristics corresponding to toroidal particles formation resulting from a bending of their chains. This implies asymmetric binding to phosphate sites on A-T containing polynucleotides. At low Sp/P ratios, spermine induced a stiffening of poly(dG-dC). No influence of spermine on the orientation mechanism of this polynucleotide was detected for Sp/P values ranging from zero to 0.35. The spermine-induced bending of A-T rich regions thus appears to be essential for DNA condensation into toroidal particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.