Abstract

Complex broadband sounds are decomposed by peripheral auditory filters into a series of relatively narrowband signals, each with a slowly varying envelope (ENV) and a rapidly fluctuating temporal fine structure (TFS). ENV and TFS information at the bilateral ears contribute differentially to auditory perception. However, whether the difference could attribute to mechanisms of binaural integration remains an open question. As a potential neural correlate, subsets of neurons in the central nucleus of the inferior colliculus (ICC) are known to integrate binaural information with binaural inhibition or binaural summation. Therefore, we recorded the frequency-following responses (FFRs) to the ENV and TFS components of narrowband noises in the ICC of anesthetized rats and examined changes in FFR amplitude and stimulus-response coherence under various sound-delivery settings. We showed that binaural FFRENV was predominantly elicited by contralateral inputs and inhibited by ipsilateral inputs, exhibiting a “binaural-inhibition” like property. On the other hand, binaural FFRTFS received a balanced contribution from both sides, echoing the “binaural-summation” mechanism. What is more, binaural FFRENV was significantly correlated with contralateral-evoked but not ipsilateral-evoked FFRENV, while binaural FFRTFS correlated with both contralateral- and ipsilateral-evoked FFRTFS. Overall, these results suggest distinct binaural processing of ENV and TFS information at the midbrain level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call