Abstract

During reproductive swarming, a honeybee swarm needs to decide on a new nest site and then move to the chosen site collectively. Most studies of swarming and nest-site selection are based on one species, Apis mellifera Natural colonies of A. mellifera live in tree cavities. The quality of the cavity is critical to the survival of a swarm. Other honeybee species nest in the open, and have less strict nest-site requirements, such as the open-nesting dwarf honeybee Apis floreaApis florea builds a nest comprised of a single comb suspended from a twig. For a cavity-nesting species, there is only a limited number of potential nest sites that can be located by a swarm, because suitable sites are scarce. By contrast, for an open-nesting species, there is an abundance of equally suitable twigs. While the decision-making process of cavity-nesting bees is geared towards selecting the best site possible, open-nesting species need to coordinate collective movement towards areas with potential nest sites. Here, we argue that the nest-site selection processes of A. florea and A. mellifera have been shaped by each species' specific nest-site requirements. Both species use the same behavioural algorithm, tuned to allow each species to solve their species-specific problem.This article is part of the theme issue 'Collective movement ecology'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.