Abstract
We have systematically investigated the electronic structures and activation capacities of BiOBr {001} facets with different atomic terminations by means of DFT methods. Our calculations reveal that oxygen vacancies (OVs) give a significant boost in band edges of the O-terminated BiOBr {001} facets, and excess electrons induced by OVs could exceed the reduction potentials of high-energy N2 intermediates. Interestingly, the Bi-terminated BiOBr {001} facets may be good candidates for photocatalytic nitrogen fixation due to the stronger activation ability of N2 molecules comparing with O-terminated BiOBr {001} facets with OVs. Moreover, the Bi-terminated BiOBr {001} facets may tend to yield NH3 instead of N2 H4 .
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.