Abstract

Mitotic chromosomes segregate at the ends of shortening spindle microtubules (MTs). In budding yeast, the Dam1 multiprotein complex supports this dynamic attachment, thereby contributing to accurate chromosome segregation. Purified Dam1 will track the end of a depolymerizing MT and can couple it to microbead transport in vitro. The processivity of such motions has been thought to depend on rings that the Dam1 complex can form around MTs, but the possibility that alternative coupling geometries contribute to these motilities has not been considered. Here, we demonstrate that both rings and nonencircling Dam1 oligomers can track MT ends and enable processive cargo movement in vitro. The coupling properties of these two assemblies are, however, quite different, so each may make a distinct contribution to chromosome motility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.