Abstract

Enterotoxigenic Escherichia coli (ETEC) produce heat-labile (LT) and/or heat-stable enterotoxins (ST). Despite that, the mechanism of action of both toxins are well known, there is great controversy in the literature concerning the in vitro production and release of LT and, for ST, no major concerns have been discussed. Furthermore, the majority of published papers describe the use of only one or a few ETEC isolates to define the production and release of these toxins, which hinders the detection of ETEC by phenotypic approaches. Thus, the present study was undertaken to obtain a better understanding of ST and LT toxin production and release under laboratory conditions. Accordingly, a collection of 90 LT-, ST-, and ST/LT-producing ETEC isolates was used to determine a protocol for toxin production and release aimed at ETEC detection. For this, we used previously raised anti-LT antibodies and the anti-ST monoclonal and polyclonal antibodies described herein. The presence of bile salts and the use of certain antibiotics improved ETEC toxin production/release. Triton X-100, as chemical treatment, proved to be an alternative method for toxin release. Consequently, a common protocol that can increase the production and release of LT and ST toxins could facilitate and enhance the sensitivity of diagnostic tests for ETEC using the raised and described antibodies in the present work.

Highlights

  • Enterotoxigenic Escherichia coli (ETEC), one of the six-diarrheagenic E. coli pathotypes (DEC), is responsible for about 300,000 to 500,000 deaths annually in children under five years of age [1]

  • stable enterotoxins (ST) MAb was classified as IgG1 and only recognized the ST toxin as determined by immunoblotting (Figure 1) and indirect ELISA

  • The step was to investigate the applicability of antibodies in detecting ST in capture ELISA

Read more

Summary

Introduction

Enterotoxigenic Escherichia coli (ETEC), one of the six-diarrheagenic E. coli pathotypes (DEC), is responsible for about 300,000 to 500,000 deaths annually in children under five years of age [1] These organisms are the most frequent cause of traveler’s diarrhea, affecting tourists traveling in endemic areas, as well as the diarrheal pathogen that most commonly afflicts military personnel deployed to endemic areas. ETEC causes watery diarrhea after small intestine colonization, mainly through different colonization factors (CFs) and the secretion of heat-labile (LT) and/or heat-stable (ST) enterotoxins that bind to epithelial cell receptors in the intestine. Both CFs and toxins are plasmid-encoded [4]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.