Abstract

Recent work has shown the dominance of the Himalaya in supporting the Indian summer monsoon (ISM), perhaps by surface sensible heating along its southern slope and by mechanical blocking acting to separate moist tropical flow from drier midlatitude air. Previous studies have also shown that Indian summer rainfall is largely unaffected in sensitivity experiments that remove only the Tibetan Plateau. However, given the large biases in simulating the monsoon in CMIP5 models, such results may be model dependent. This study investigates the impact of orographic forcing from the Tibetan Plateau, Himalaya and Iranian Plateau on the ISM and East Asian summer monsoon (EASM) in the UK Met Office’s HadGEM3-GA6 and China’s Institute of Atmospheric Physics FGOALS-FAMIL global climate models. The models chosen feature oppositesigned biases in their simulation of the ISM rainfall and circulation climatology.The changes to ISM and EASM circulation across the sensitivity experiments are similar in both models and consistent with previous studies. However, considerable differences exist in the rainfall responses over India and China, and in the detailed aspects such as onset and retreat dates. In particular, the models show opposing changes in Indian monsoon rainfall when the Himalaya and Tibetan Plateau orography are removed. Our results show that a multi-model approach, as suggested in the forthcoming Global Monsoon Model Intercomparison Project (GMMIP) associated with CMIP6, is needed to clarify the impact of orographic forcing on the Asian monsoon and to fully understand the implications of model systematic error.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call