Abstract

Plant secondary metabolites are known to not only play a key role in the adaptation of plants to their environment, but also represent an important source of active pharmaceuticals. Alpinia oxyphylla capsular fruits, made up of seeds and pericarps, are commonly used in traditional East Asian medicines. In clinical utilization of these capsular fruits, inconsistent processing approaches (i.e., hulling pericarps or not) are employed, with the potential of leading to differential pharmacological effects. Therefore, an important question arises whether the content levels of pharmacologically active chemicals between the seeds and pericarps of A. oxyphylla are comparable. Nine secondary metabolites present in A. oxyphylla capsular fruits, including flavonoids (e.g., tectochrysin, izalpinin, chrysin, apigenin-4',7-dimethylether and kaempferide), diarylheptanoids (e.g., yakuchinone A and B and oxyphyllacinol) and sesquiterpenes (e.g., nootkatone), were regarded as representative constituents with putative pharmacological activities. This work aimed to investigate the abundance of the nine constituents in the seeds and pericarps of A. oxyphylla. Thirteen batches of A. oxyphylla capsular fruits were gathered from different production regions. Accordingly, an ultra-fast high performance liquid chromatography/quadrupole tandem mass spectrometry (UFLC-MS/MS) method was developed and validated. We found that: (1) the nine secondary metabolites were differentially concentrated in seeds and fruit capsules; (2) nootkatone is predominantly distributed in the seeds; in contrast, the flavonoids and diarylheptanoids are mainly deposited in the capsules; and (3) the content levels of the nine secondary metabolites occurring in the capsules varied greatly among different production regions, although the nootkatone levels in the seeds were comparable among production regions. These results are helpful to evaluating and elucidating pharmacological activities of A. oxyphylla capsular fruits. Additionally, it may be of interest to elucidate the mechanisms involved in the distinct accumulation profiles of these secondary metabolites between seeds and pericarps.

Highlights

  • Plants have colonized the vast majority of the terrestrial surface on the Earth and largely contributed to the terrestrial biomass by volume and weight

  • An UFLC-MS/MS method was developed and validated and successfully applied to quantify the nine major secondary metabolites found in A. oxyphylla seeds and pericarps

  • Quantification results confirmed our hypothesis that the distribution profile of the nine secondary metabolites in the seeds was different from those in the fruit capsules

Read more

Summary

Introduction

Plants have colonized the vast majority of the terrestrial surface on the Earth and largely contributed to the terrestrial biomass by volume and weight. Plants have evolved biochemical pathways that allow them to synthesize a wealth of chemicals, i.e., secondary metabolites that increase plants’. Overall ability to survive and overcome local challenges [1]. These metabolites act, at least in part, as protectants (often described as being antibiotic, antifungal and antiviral agents) for plant bodies against herbivores and pathogens, as well as from physical stresses like ultraviolet light and heat [2]. Variations exist in the distribution of secondary metabolites among different plant parts. It appears that these products are often concentrated in the most vulnerable tissues

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call