Abstract
This study was to investigate whether various region-of-interest (ROI) methods for measuring dopamine transporter (DAT) availabilities by single photon emission computed tomography (SPECT) are statistically different, whether results of medical research are thereby influenced, and causes of these differences. Eighty-four healthy adults with 99mTc-TRODAT-1 SPECT and magnetic resonance imaging (MRI) scans were included. Six major analysis approaches were compared: (1) ROI drawn on the coregistered MRI; (2) ROIs drawn on the SPECT images; (3) standard ROI templates; (4) threshold-ROIs; (5) atlas-based mappings with coregistered MRI; and (6) atlas-based mappings with SPECT images. Using the atlas-based approaches we assessed the influence of striatum ROIs by slice-wise and voxel-wise comparisons. In (5) and (6), three partial-volume correction (PVC) methods were also explored. The results showed that DAT availabilities obtained from different methods were closely related but quite different and leaded to significant differences in determining the declines of DAT availability per decade (range: 5.95–11.99%). Use of 3D whole-striatum or more transverse slices could avoid biases in measuring the striatal DAT declines per decade. Atlas-based methods with PVC may be the preferable methods for medical research.
Highlights
Imaging the dopamine (DA) neurotransmission system using single photon emission computed tomography (SPECT) or positron emission tomography (PET) with various radioligands can provide quantitative information about the central dopaminergic system
We found that using different methods yielded different dopamine transporter (DAT) availability and thereby led to large differences in DAT availability declines per decade
We investigated the effects of ROI sizes, locations and partial volume correction (PVC) on determining DAT availabilities and DAT availability declines per decade
Summary
Imaging the dopamine (DA) neurotransmission system using single photon emission computed tomography (SPECT) or positron emission tomography (PET) with various radioligands can provide quantitative information about the central dopaminergic system. Analysis of DA neurotransmission SPECT or PET images acquired at an optimal imaging time point to obtain a simple ratio of specific to nonspecific binding is a validated method for assessing the DA neurotransmission system [1] and has been extensively used. Defining the region-of-interest (ROI) of the specific binding area (the striatum) and nonspecific binding area (reference areas, devoid of the DA neurotransmission system, such as the occipital area or cerebellum) is necessary for the ratio methods. Statistical parametric mapping (SPM; Wellcome Trust Centre for Neuroimaging), a voxel-based analysis, can be used by normalizing the individual scans to the same Montreal Neurological Institute (MNI) template spatially to calculate the ratio of specific to nonspecific binding.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.