Abstract
ObjectiveHere we aimed to explore the differences in individual gray matter (GM) networks at baseline in mild cognitive impairment patients who converted to Alzheimer's disease (AD) within 3 years (MCI-C) and nonconverters (MCI-NC). Materials and methodsData from 461 MCI patients (180 MCI-C and 281 MCI-NC) were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). For each subject, a GM network was constructed using 3D-T1 imaging and the Kullback–Leibler divergence method. Gradient and topological analyses of individual GM networks were performed, and partial correlations were calculated to evaluate relationships among network properties, cognitive function, and apolipoprotein E (APOE) €4 alleles. Subsequently, a support vector machine (SVM) model was constructed to discriminate the MCI-C and MCI-NC patients at baseline. ResultsThe gradient analysis revealed that the principal gradient score distribution was more compressed in the MCI-C group than in the MCI-NC group, with scores for the left lingual gyrus, right fusiform gyrus and left middle temporal gyrus being increased in the MCI-C group (p < 0.05, FDR corrected). The topological analysis showed significant differences in nodal efficiency in four nodes between the two groups. Furthermore, the regional gradient scores or nodal efficiency were found to be significantly related to the neuropsychological test scores, and the left middle temporal gyrus gradient scores were positively associated with the number of APOE €4 alleles (r = 0.192, p = 0.002). Ultimately, the SVM model achieved a balanced accuracy of 79.4% in classifying MCI-C and MCI-NC patients (p < 0.001). ConclusionThe whole-brain GM network hierarchy in the MCI-C group was more compressed than that in the MCI-NC group, suggesting more serious cognitive impairments in the MCI-C group. The left middle temporal gyrus gradient scores were related to both cognitive function and APOE €4 alleles, thus serving as potential biomarkers distinguishing MCI-C from MCI-NC at baseline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.