Abstract

Coprostanol and cholestanol are two saturated analogues of cholesterol. The former, which is the A/B ring isomer of cholesterol, is a nonabsorbable sterol, whereas the latter, which has an A/B ring configuration closer to that of cholesterol, is absorbed only half as efficiently as cholesterol. Intestinal mucosal cell uptake and esterification, two important steps in absorption, were studied in vivo after feeding the sterols and in vitro using everted sacs of rat small intestine. The results showed that the intestinal tissue content of coprostanol, total and esterified, were significantly lower than that of cholestanol. Total cholesterol concentration in the intestinal tissue was similar throughout but the esterified cholesterol content increased significantly throughout the length of the intestine compared with controls. The study suggests that cholestanol is absorbable because its uptake and esterification are not limited, whereas coprostanol is nonabsorbable because its uptake and esterification are limited in the intestinal mucosa. Also, the two sterols stimulate the activities of cholesterol esterase, one of the cholesterol esterifying enzymes, in the intestinal mucosa. The present study along with previous studies suggests that the structure of the sterol molecule as a whole appears to be the important determinant for its uptake and esterification, and probably absorption, in the small intestine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call