Abstract

Controlling the balance of pro-inflammatory M1 versus anti-inflammatory M2 macrophages may have paramount therapeutic benefit in cardiovascular diseases, infections, cancer and chronic inflammation. The targeted depletion of different macrophage populations provides a therapeutic option to regulate macrophage-mediated functions. Macrophages are highly sensitive to necroptosis, a newly described regulated cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain like pseudokinase. Antagonists of inhibitors of apoptosis proteins (SMAC mimetics) block RIPK1 ubiquitination, while TGF-activated kinase 1 (TAK1) inhibitors prevent the phosphorylation of RIPK1, resulting in increased necroptosis. We compared the sensitivity of monocyte-derived human M1 and M2 cells to various apoptotic and necroptotic signals. The two cell types were equally sensitive to all investigated stimuli, but TAK1 inhibitor induced more intense necroptosis in M2 cells. Consequently, the treatment of co-cultured M1 and M2 cells with TAK1 inhibitor shifted the balance of the two populations toward M1 dominance. Blockage of either Aurora Kinase A or glycogen synthase kinase 3β, two newly described necroptosis inhibitors, increased the sensitivity of M1 cells to TAK1-inhibitor-induced cell death. Finally, we demonstrated that in vitro differentiated tumor-associated macrophages (TAM-like cells) were as highly sensitive to TAK1 inhibitor-induced necroptosis as M2 cells. Our results indicate that at least two different necroptotic pathways operate in macrophages and the targeted elimination of different macrophage populations by TAK1 inhibitor or SMAC mimetic may provide a therapeutic option to regulate the balance of inflammatory/anti-inflammatory macrophage functions.

Highlights

  • Macrophages with highly polarized functions coexist in tissues throughout the body to ensure the modulation of immune responses

  • We found that M2 macrophages were highly sensitive, while M1 macrophages were unaffected by TGF-activated kinase 1 (TAK1) inhibitor-generated necroptosis

  • M2 macrophages, but not M1 cells are sensitive to TAK1 inhibitor‐induced necroptosis

Read more

Summary

Introduction

Macrophages with highly polarized functions coexist in tissues throughout the body to ensure the modulation of immune responses. Macrophages can be subdivided into classically activated M1 and alternatively activated M2 phenotypes. M1 cells provide the first line of immune defense and activate both innate and adaptive immunity, while M2 macrophages are responsible for the regulation of tissue regeneration, are involved in the clearance of apoptotic bodies and contribute to the immune suppression [1]. Controlling the balance of pro-inflammatory versus anti-inflammatory macrophages may have paramount therapeutic benefit in all the world’s leading causes of death, such as in cardiovascular diseases [2, 3], infections [4], cancers [5, 6], chronic inflammation [7], diabetes [8] or autoimmune reactions [9]. The success of immunotherapy highlights the effectiveness of the immune system in tumor eradication.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.