Abstract

BackgroundCuticular hydrocarbons (CHC) have been documented to play crucial roles as species- and sex-specific cues in the chemical communication systems of a wide variety of insects. However, whether they are sufficient by themselves as the sole cue triggering sexual behavior as well as preference of con- over heterospecific mating partners is rarely assessed. We conducted behavioral assays in three representative species of parasitoid wasps (Hymenoptera: Pteromalidae) to determine their reliance on CHC as species-specific sexual signaling cues.ResultsWe found a surprising degree of either unspecific or insufficient sexual signaling when CHC are singled out as recognition cues. Most strikingly, the cosmopolitan species Nasonia vitripennis, expected to experience enhanced selection pressure to discriminate against other co-occurring parasitoids, did not discriminate against CHC of a partially sympatric species from another genus, Trichomalopsis sarcophagae. Focusing on the latter species, in turn, it became apparent that CHC are even insufficient as the sole cue triggering conspecific sexual behavior, hinting at the requirement of additional, synergistic sexual cues particularly important in this species. Finally, in the phylogenetically and chemically most divergent species Muscidifurax uniraptor, we intriguingly found both CHC-based sexual signaling as well as species discrimination behavior intact although this species is naturally parthenogenetic with sexual reproduction only occurring under laboratory conditions.ConclusionsOur findings implicate a discrepancy in the reliance on and specificity of CHC as sexual cues in our tested parasitioid wasps. CHC profiles were not sufficient for unambiguous discrimination and preference behavior, as demonstrated by clear cross-attraction between some of our tested wasp genera. Moreover, we could show that only in T. sarcophagae, additional behavioral cues need to be present for triggering natural mating behavior, hinting at an interesting shift in signaling hierarchy in this particular species. This demonstrates the importance of integrating multiple, potentially complementary signaling modalities in future studies for a better understanding of their individual contributions to natural sexual communication behavior.

Highlights

  • Cuticular hydrocarbons (CHC) have been documented to play crucial roles as species- and sexspecific cues in the chemical communication systems of a wide variety of insects

  • We investigated whether males can discriminate con- from heterospecific females based on their CHC profiles, elucidating the degree of speciesspecificity in CHC-mediated sexual signaling to assess their potential function in prezygotic reproductive isolation

  • When freeze-killed females were cleared of their CHC profiles, male courtship behavior and copulation attempts were significantly reduced compared to pairings with untreated (CB: χ2 = 20.05, P < 0.001; CA: χ2 = 28.9, P < 0.001) and freeze-killed females (CB: χ2 = 11.4, P = 0.001; CA: χ2 = 25.66, P < 0.001), respectively (Fig. 1a)

Read more

Summary

Introduction

Cuticular hydrocarbons (CHC) have been documented to play crucial roles as species- and sexspecific cues in the chemical communication systems of a wide variety of insects. Whether they are sufficient by themselves as the sole cue triggering sexual behavior as well as preference of con- over heterospecific mating partners is rarely assessed. For closely related species occurring in sympatry, sexual signals with high degrees of similarity bear the risk of cross-attraction, which might in turn lead to fitness reductions due to heterospecific attraction, courtship, and mating This has led to the assumption of increased diverging selection acting on sexual cues and signals and their corresponding recognition mechanisms in sympatric species, reducing the risk of cross-attraction [4, 5] and contributing to prezygotic reproductive isolation [6,7,8,9]. CHC involvement in species recognition and sexual signaling has further been demonstrated in the Hymenopteran wasp families Bethylidae [25] and Braconidae [26]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call