Abstract

Cytochrome P450 2C19 (CYP2C19) genotypes and metabolic phenotypes (extensive metabolizer (EM), intermediate metabolizer (IM), and poor metabolizer (PM)) are related to the metabolism of therapeutic drugs for cardiovascular and cerebrovascular diseases. This study aimed to investigate the differences of CYP2C19 gene polymorphism distribution between coronary artery disease (CAD) patients and cerebral infarction (CI) patients. We identified 413 CI patients, 509 CAD patients, and 241 CI+CAD patients from 2016 to 2020 and studied genotypes of CYP2C19 rs4986893 (636G>A) and rs4244285 (681G>A) polymorphisms using PCR-gene chip detection method. Differences in CYP2C19 genotypes and metabolic phenotypes between the groups were compared. To analyze the efficacy of CYP2C19 metabolic phenotypes in discriminating between cerebral infarction and coronary artery disease, multiple logistic regression analysis was conducted after adjusting for gender, age, smoking history, drinking history, hypertension, and diabetes. There were significant differences in the distribution of CYP2C19 genotypes and metabolic phenotypes between CI and CAD patients. The results of multivariate logistic regression (adjusted for sex, age, smoking, drinking, hypertension, and diabetes) indicated that CYP2C19 IM phenotype (IM vs EM: OR 1.443, 95% CI: 1.086-1.918, P=0.011) and CYP2C19 IM+PM phenotype (IM or PM vs EM: OR 1.440, 95% CI: 1.100-1.885, P=0.008) may be indicators of CI from CAD. CYP2C19 EM metabolic phenotype was dominant in CAD patients, and CYP2C19 IM metabolic phenotype was dominant in CI patients. After adjusting for other confounding factors, patients with the CYP2C19 IM metabolic phenotype were more likely to develop CI than CAD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call