Abstract

In culture, Gambierdiscus spp. have been shown to prefer irradiances that are relatively low (≤250μmol photonsm−2s−1) versus those to which they are frequently exposed to in their natural environment (>500μmol photonsm−2s−1). Although several behavioral strategies for coping with such irradiances have been suggested, it is unclear as to how these dinoflagellates do so on a physiological level. More specifically, how do long term exposures (30days) affect cell size and cellular chlorophyll content, and what is the photosynthetic response to short term, high irradiance exposures (up to 1464μmol photonsm−2s−1)? The results of this study reveal that cell size and chlorophyll content exhibited by G. carolinianus increased with acclimation to increasing photon flux density. Additionally, both G. carolinianus and G. silvae exhibited reduced photosynthetic efficiency when acclimated to increased photon flux density. Photosynthetic yield exhibited by G. silvae was greater than that for G. carolinianus across all acclimation irradiances. Although such differences were evident, both G. carolinianus and G. silvae appear to have adequate biochemical mechanisms to withstand exposure to irradiances exceeding 250μmol photonsm−2s−1 for at least short periods of time following acclimation to irradiances of up to 150μmol photonsm−2s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.