Abstract
Palladium(II) precatalysts are used extensively to facilitate cross-coupling reactions because they are bench stable and give high activity. As a result, precatalysts such as Buchwald's palladacycles, Organ's PEPPSI species, Nolan's allyl-based complexes, and Yale's 1-tert-butylindenyl containing complexes, are all commercially available. Comparing the performance of the different classes of precatalysts is challenging because they are typically used under different conditions, in part because they are reduced to the active species via different pathways. However, within a particular class of precatalyst, it is easier to compare performance because they activate via similar pathways and are used under the same conditions. Here, we evaluate the activity of different allyl-based precatalysts, such as (η3-allyl)PdCl(L), (η3-crotyl)PdCl(L), (η3-cinnamyl)PdCl(L), and (η3-1-tert-butylindenyl)PdCl(L) in Suzuki-Miyaura reactions. Specifically, we evaluate precatalyst performance as the ancillary ligand (NHC or phosphine), reaction conditions, and substrates are varied. In some cases, we connect relative activity to both the mechanism of activation and the prevalence of the formation of inactive palladium(I) dimers. Additionally, we compare the performance of in situ generated precatalysts with commonly used palladium sources such as tris(dibenzylideneacetone)dipalladium(0) (Pd2dba3), bis(acetonitrile)dichloropalladium(II) (Pd(CH3CN)2Cl2), and palladium acetate. Our results provide information about which precatalyst to use under different conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.