Abstract

Multiple studies have suggested that the reduced differentiation capacity of multipotent adipose tissue-derived mesenchymal stem cells (ASCs) in obese subjects could compromise their use in cell therapy. Our aim was to assess the osteogenic potential of omental ASCs and to examine the status of the isolated CD34(negative)-enriched fraction of omental-derived ASCs from subjects with different metabolic profiles. Omental ASCs from normal-weight subjects and subjects with or without metabolic syndrome were isolated, and the osteogenic potential of omental ASCs was evaluated. Additionally, osteogenic and clonogenic potential, proliferation rate, mRNA expression levels of proteins involved in redox balance, and fibrotic proteins were examined in the CD34(negative)-enriched fraction of omental-derived ASCs. Both the omental ASCs and the CD34(negative)-enriched fraction of omental ASCs from subjects without metabolic syndrome have a greater osteogenic potential than those from subjects with metabolic syndrome. The alkaline phosphatase and osteonectin mRNA were negatively correlated with nicotinamide adenine dinucleotide phosphate oxidase-2 mRNA and the mRNA expression levels of the fibrotic proteins correlated positively with nicotinamide adenine dinucleotide phosphate oxidase-5 mRNA and the homeostasis model assessment. Although the population doubling time was significantly higher in subjects with a body mass index of 25 kg/m(2) or greater, only the CD34(negative)-enriched omental ASC fraction in the subjects with metabolic syndrome had a higher population doubling time than the normal-weight subjects. The osteogenic, clonogenic, fibrotic potential, and proliferation rate observed in vitro suggest that omental ASCs from subjects without metabolic syndrome are more suitable for therapeutic osteogenic applications than those from subjects with metabolic syndrome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.