Abstract

Differences in the molecular structures of beta(2)-microglobulin between the two morphologically different amyloid fibrils having a needlelike [long-straight (LS)] and flexible [wormlike (WL)] character were investigated by infrared, Raman, and vacuum-ultraviolet circular dichroism spectroscopy. It turned out that although the beta-sheet content was comparable between the two kinds of fibrils (53 +/- 6% for the LS fibril and 47 +/- 6% for the WL fibril), the protonation states of the carboxyl side chains were distinctly different; the deprotonated (COO(-)) and protonated (COOH) forms were dominant in the LS and WL fibrils at pH 2.5, respectively, meaning that the pK(a) is specifically lowered in the LS fibril. Such a difference was not observed for the fibrils of the core fragments. Since site-specific interactions generally cause variation in the pK(a) of carboxyl side chains in proteins, these results suggest that "hook"-like interactions generated by hydrogen bonding and the formation of a salt bridge are present in the LS fibril, providing enthalpic stabilization. Presumably, the carboxyl groups fix the spatial arrangement of beta-strands and beta-sheets, bringing about the needlelike morphology. The absence of this regulation would result in the flexible morphology of the WL fibril, providing entropic stabilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call