Abstract

It is generally thought that pairing and recombination between the X and Y chromosome in eutherian mammals is important for the occurrence of normal meiotic division and the production of functional gametes. Microtus agrestis is one of the examples whose giant and heterochromatin-rich sex chromosomes fail to establish a durable association at any stage of the first meiotic division in males. In contrast, in females, synapsis starts in the euchromatic short arm and pairing progresses unidirectionally and continues until both X chromosomes have paired completely, as can be demonstrated by the use of fluorescence in situ hybridization with a sequence confined to the non-centromeric, gonosomal heterochromatin. However, compared with euchromatin, this association is apparently ephemeral and breaks off precociously in the pachytene and metaphase I stages. We demonstrate that a middle repetitive element is localized interspersed in the noncentromeric heterochromatin of both X and Y, except the telomeric region of the Y. No differences could be detected at the molecular level between male and female DNA, indicating that at least the bulk of these elements are organized in the same manner on the X and Y. Our data imply that the loss of synapsis and recombination between the X and Y might have preceded the process of heterochromatin amplification in the course of Microtinae evolution. Since asynapsed elements are particularly susceptible to DNA strand breaks during prophase I, DNA repair of double-strand breaks involving heterochromatic segments of the X and Y could have resulted in translocations of larger segments from the X to the Y or vice versa during the course of chromosome evolution of the gonosomes, explaining the homology at the molecular level between the heterochromatin of the asynaptic X and Y in M. agrestis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call