Abstract

Hydrogen peroxide (H(2)O(2)), ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) and salicylic acid (SA) concentrations and ACC synthase (ACS) gene expression were measured to establish whether the high sensitivity of the Populus deltoides x maximowiczii clone Eridano to ozone (O(3)) exposure, compared with the O(3)-resistant Populus deltoides x euramericana clone I-214, is attributable to differences in the modulation of signal transduction pathways. In a time-course experiment, Populus deltoides (poplar) clones were exposed to acute fumigation with 150 nl l(-1) O(3) for 5 h. The two poplar clones showed differences in ethylene evolution, I-214 displaying earlier and less pronounced ethylene emission than Eridano. In both clones, ethylene evolution was accompanied by increased ACS transcript levels and enhanced emission of free ACC. I-214 exhibited a greater basal concentration of free SA and a lower concentration of the conjugated pool. However, a slight accumulation of free SA at the end of the 5-h exposure was found only in Eridano, together with an earlier minimal increase in the concentration of conjugated SA. The results show that both clones react to O(3) by producing H(2)O(2), ethylene and SA, but the difference in sensitivity to the pollutant is probably attributable to differences in the kinetics and magnitude of this response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.