Abstract
BackgroundKneeling is necessary for certain religious and ceremonial occasions, crouching work, and gardening, which many people take part in worldwide. However, there have been few reports about kneeling activities. The purpose of this study was to clarify the kinematics of kneeling.MethodsThe subjects were 15 healthy young males. Kneeling activity was analysed within a knee flexion angle from 100° to maximum flexion (maxflex, mean ± SD = 161.3 ± 3.2°). The kinematic and contact point (CP) analyses were performed using a 2D/3D registration method, in which a 3D bone model created from computed tomography images was matched to knee lateral fluoroscopic images and analysed on a personal computer.ResultsIn the kinematic analysis, the femur translated 37.5 mm posteriorly and rotated 19.8° externally relative to the tibia during the knee flexion phase. During the knee extension phase, the femur translated 36.4 mm anteriorly, which was almost the same amount as in the knee flexion phase. However, the femur rotated only 7.4° internally during the knee extension phase. In the CP analysis, the amount of anterior translation of the CP in the knee extension phase was greater in the medial CP and smaller in the lateral CP than that of posterior translation in the knee flexion phase.ConclusionsIn kneeling, there was a difference in the rotational kinematics between the flexion phase and the extension phase. The kinematic difference between the flexion and extension phases may have some effect on the meniscus and articular cartilage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.