Abstract

We have investigated the effects of ionizing radiation (0.10 to 10 krad) on the Na+-dependent transport of 2-aminoisobutyric acid and the involvement of a plasma membrane sulfhydryl-protein component which modulates this transport system in a human T (Molt-4) and a B (RPMI 1788) lymphoid cell line. The radiosensitivity of this transport system and a putative sulfhydryl membrane regulatory component correlated with the known radiosensitivity of these two cell lines, i.e., DNA synthesis and survival, were much more sensitive to the effects of γ irradiation in Molt-4 than in RPMI 1788 cells. Ionizing radiation affected Na+-dependent amino acid transport in Molt-4 cells by a process which affects the maximal rate of uptake of the amino acid (i.e., V max) into the cell. No change in Na+-independent amino acid transport was observed when Molt-4 cells were subjected to radiation levels as high as 5 krad. These data coupled with the observations from other laboratories have led us to hypothesize that the radiatio...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.