Abstract

BackgroundFish culture in rice paddies can contribute to increasing yields of rice and surplus fish products. Environmental impacts and food-safety issues have become important topics in aquaculture, and organic foods currently were paid attention by researchers and industry practitioners. But the mechanism of differences in quality of Loach (Paramisgurnus dabryanus) reared in rice fields and ponds remains largely uncharacterized. In this study,digestive enzyme activity, intestinal mucosa cells and the gut microbial community of loach were determined under the two separate cultivation modes.ResultsThe levels of intestinal digestive enzyme activity of fish reared in the paddy-cultivated mode (PACM) were higher (P < 0.05) than those in the pond-cultivated mode (POCM). It was extremely significant (P < 0.01) for the activity of lipase in the liver, foregut and midgut, and for the activities of amylase and trypsin in the hindgut. Acid mucous cells in the loach foregut in PACM were fewer than in POCM (P < 0.01). In summer, the abundance of the Firmicutes, Lactobacillus spp., Aeromonas hydrophila, Enterobacteriaceae and Streptococcus spp. in loach intestinal mucosa in PACM was higher than in POCM. In fall, the abundance of total bacteria, the Bacteroidetes, Bifidobacterium and Enterobacteriaceae in the intestinal mucosa in PACM was likewise higher than in POCM. These differences were significant (P < 0.05 or P < 0.01) between loach in the two separate culture modes for all microorganisms except for A. hydrophila and Streptococcus spp. In addition, quantitative PCR assays showed that some microorganisms presented consistently similar abundances in the gut as in the culture water.ConclusionsThese results showed some enzymatic activities involved in digestion in liver and intestine of loach in PACM were higher than those in POCM, as using digestive enzyme analysis and histological observation of intestinal sections. These findings suggest most of the microorganisms examined in the gut mucosa of loach in the two culture modes significantly differed in abundance between summer and fall. However, some pathogenic bacteria in the gut, particularly A. hydrophila, presented lower abundance in PACM in fall, yet did not differ in abundance between loach in the two cultivation modes.

Highlights

  • Fish culture in rice paddies can contribute to increasing yields of rice and surplus fish products

  • The activity of lipase in liver, foregut and midgut was significantly higher in paddy-cultivated mode (PACM) than in pond-cultivated mode (POCM) (P < 0.01); in contrast, the activities of amylase and trypsin were lower in just the liver and foregut but higher in the hindgut in PACM as compared with POCM (P < 0.01)

  • The numbers of mucous cells gradually decreased from the foregut to hindgut in the intestine of loach in PACM and in POCM (P < 0.01)

Read more

Summary

Introduction

Fish culture in rice paddies can contribute to increasing yields of rice and surplus fish products. The intestinal tract of vertebrates plays a critical role in absorbing nutrients and protecting the host from pathogens [1, 2]. Goblet cells secrete mucus that provides a mechanical and chemical barrier with an immune function in the intestinal wall [9,10,11]. Together, these contribute to the host’s absorption of nutrients and protect it against pathogens. Increasing evidences indicate that the normal structure and function of the intestinal tract can strengthen intestinal digestion and absorption process [12], and can enhance the immune system to protect the host from invasion via the external environment

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call