Abstract

Previous simulation studies on human connectomes suggested, that critical dynamics emerge subcrititcally in the so called Griffiths Phases. %This is the consequence of the strong heterogeneity of the graphs. Now we investigate this on the largest available brain network, the $21.662$ node fruit-fly connectome, using the Kuramoto synchronization model. As this graph is less heterogeneous, lacking modular structure and exhibit high topological dimension, we expect a difference from the previous results. Indeed, the synchronization transition is mean-field like, and the width of the transition region is larger than in random graphs, but much smaller than as for the KKI-18 human connectome. This demonstrates the effect of modular structure and dimension on the dynamics, providing a basis for better understanding the complex critical dynamics of humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.