Abstract

Single muscle fibres were isolated from the fast myotomal muscle of the teleost Myoxocephalus scorpius L. and chemically skinned with 1% Brij. Maximum Ca2+-activated force (P0) increased from 14.5 +/- 1.1 N cm-2 at 2 degrees C to 19.1 +/- 1.8 N cm-2 at 15 degrees C (mean +/- S.E.). Maximum contraction velocity was determined by Hill's slack-test method (V0) and by extrapolation from force-velocity (P-V) relationships (Vmax). There was a linear relation between log10 V0 and temperature below 15 degrees C (Q10 = 1.9, P less than 0.01). The force-velocity characteristics of the fibres were determined at 2 degrees C and 20 degrees C. Points below 0.6 P0 on the P-V curve could be fitted by a linear form of Hill's equation. Extrapolated Vmax values were 0.55 muscle lengths s-1 (L0 s-1) at 2 degrees C and 1.54 L0 s-1 at 20 degrees C. Curvature of the P-V relationship was independent of temperature. The Mg2+, Ca2+-ATPase activity of Triton-X 100 extracted myofibrils was determined under similar ionic conditions to those used in skinned fibre experiments. (Ionic strength 0.16 mmol l-1, pMgATP 2.5). A linear relationship between log10 ATPase and temperature was only obtained below 15 degrees C (P less than 0.001). Above 15 degrees C, the Q10 for ATPase decreased significantly. The Q10(0-15 degrees C) for ATPase activity (3.9) was significantly higher than for unloaded contraction velocity. Supercontraction of isolated myofibrils to very short sarcomere lengths and differences in the mechanical constraints for crossbridge cycling between the preparations probably account for the lack of proportionality between these two parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.