Abstract

We examined variability in sucrose levels and metabolism in ripe fruits of wild and domestic Vaccinium species and in developing fruits of cultivated blueberry (V. ashei and V. corymbosum). The objective was to determine if sufficient variability for fruit sucrose accumulation was present in existing populations to warrant attempts to breed for high‐sucrose fruit, which potentially would be less subject to bird predation. Threefold differences in fruit sucrose concentration were found among Vaccinium species, ranging from 19 to 24 mg (g fresh weight)−1 in V. stamineum and V. arboreum to approximately 7 mg (g fresh weight)−1 in cultivated blueberry (V. ashei and V. corymbosum) and V. darrowi. Hexose levels were similar among species, ranging from 90 to 110 mg (g fresh weight)–1, and glucose and fructose were present in equal amounts. Soluble acid invertase (EC 3.2.1.26) activity was negatively correlated with fruit sucrose concentration. There was no apparent correlation between fruit sugar concentration and either sucrose synthase (EC 2.4.1.13) or sucrose phosphate synthase (EC 2.4.1.14) activities, both of which were low for all species studied. Developmental increases in fruit sugar levels of cultivated blueberry followed a pattern similar to that observed in fruit fresh weight accumulation. Hexose concentrations ranged from 6 to 30 mg (g fresh weight)−1 during the first 60 days after anthesis. Between 60 days and fruit ripening (80 days), hexose levels rose from 30 to 80 mg (g fresh weight)−1. Sucrose was not detected in fruits until ripening, when low levels were found. Insoluble acid invertase activity was relatively high early in fruit development, decreasing as soluble acid invertase activity increased. Between 60 days and fruit ripening, soluble acid invertase activity increased from 3 to 55 μmol (g fresh weight)–1 h–1. Both sucrose synthase and sucrose phosphate synthase activities were low throughout development. The extent of sucrose accumulation in fruits and the degree of variability for this trait among Vaccinium species support the feasibility of developing high sucrose fruits, which would be a potentially valuable addition to current strategies of minimizing crop losses to birds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call