Abstract

The cuttings of Populus przewalskii Maximowicz were exposed to three different watering regimes (100, 50, and 25% of the field capacity) in a greenhouse to characterize the morphological, physiological, and biochemical basis of drought tolerance in woody plants. Two contrasting populations of P. przewalskii were used in our study, which were from the wet and dry climate regions in western China, respectively. The results showed that there were significant differences in responses to three different watering regimes in both populations tested; drought not only significantly affected dry mass accumulation and partitioning but also significantly decreased chlorophyll pigment contents and accumulated free proline and total amino acids. On the other hand, drought also significantly increased the levels of abscisic acid, hydrogen peroxide, and superoxide radical as secondary messengers to induce the entire set of antioxidative systems including the increase of reduced ascorbic acid (ASA) content and the activities of superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase (GR). Moreover, there were different responses to drought stress between the two contrasting populations of P. przewalskii. Compared to the wet climate population, the dry climate population showed lower dry matter accumulation and partitioned more biomass to root systems, and accumulated more free proline and total amino acids for osmotic adjustment. The dry climate population also showed more efficient antioxidant systems with higher content of ASA and higher activities of ascorbate peroxidase and GR than the wet climate population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call