Abstract

After massive afforestation, the Loess Plateau is facing the severe challenge of water shortages. Water use efficiency (WUE) is an important indicator of plant drought resistance, and high WUE is an important way to reconcile the contradiction between vegetation growth and soil water consumption (SWC). Different vegetation types significantly influence hydrological cycle process and WUE. In this study, the Biome-BGC model was used to simulate and analyze the soil water storage (SWS), SWC, and WUE of 3 typical vegetation types in the Loess Plateau from 2005 to 2020. The results showed that the order of SWS of different vegetation types from largest to smallest was grassland (GL, 81.82 mm/day), abandoned farmland (AF, 66.92 mm/day), and Robinia pseudoacacia forest (RP, 55.64 mm/day); SWC was RP (480.09 mm/year), GL (464.68 mm/year), and AF (421.79 mm/year); WUE was RP (2.37 gC/kgH2O), GL (1.10 gC/kgH2O), and AF (0.60 gC/kgH2O). GL showed a better water retention capacity. Precipitation recharge did not meet the full SWC of vegetation. In years of high vegetation growth, as well as in the dry season when water was scarce, both RP and GL showed varying degrees of water deficit. Correlation analysis revealed that a positive effect of precipitation on WUE has a threshold effect, and the thresholds range from approximately 15–50 mm/day for RP, 15–25 mm/day for GL, and no clear pattern for AF. Overall, in water-stressed areas, a large expansion of forest land should be reduced and GL should be increased. In seasons and areas where vegetation is growing vigorously or extremely arid, irrigation regarding precipitation thresholds should be carried out to improve the WUE of vegetation and promote the sustainable development of regional ecology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call