Abstract

The differences in small noncoding RNAs (sncRNAs), including miRNAs, piRNAs, and tRNA-derived fragments (tsRNAs), between X and Y sperm of mammals remain unclear. Here, we employed high-throughput sequencing to systematically compare the sncRNA profiles of X and Y sperm from bulls (n = 3), which may have a wider implication for the whole mammalian class. For the comparison of miRNA profiles, we found that the abundance of bta-miR-652 and bta-miR-378 were significantly higher in X sperm, while nine miRNAs, including bta-miR-204 and bta-miR-3432a, had greater abundance in Y sperm (p < 0.05). qPCR was then used to further validate their abundances. Subsequent functional analysis revealed that their targeted genes in sperm were significantly involved in nucleosome binding and nucleosomal DNA binding. In contrast, their targeted genes in mature oocyte were significantly enriched in 11 catabolic processes, indicating that these differentially abundant miRNAs may trigger a series of catabolic processes for the catabolization of different X and Y sperm components during fertilization. Furthermore, we found that X and Y sperm showed differences in piRNA clusters distributed in the genome as well as piRNA and tsRNA abundance, two tsRNAs (tRNA-Ser-AGA and tRNA-Ser-TGA) had lower abundance in X sperm than Y sperm (p < 0.05). Overall, our work describes the different sncRNA profiles of X and Y sperm in cattle and enhances our understanding of their potential roles in the regulation of sex differences in sperm and early embryonic development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.