Abstract

Patients with obesity and type 2 diabetes mellitus (T2DM) are regarded to have reduced serum magnesium (Mg) concentrations. We aimed to assess the changes in serum Mg concentrations at 12-month follow-up in patients, with and without T2DM, who underwent one anastomosis gastric bypass surgery. Overall, 50 patients (80% female, age 42.2 (12.5) years) with morbid obesity (mean baseline BMI 43.8 (4.3) kg/m2) were included in the analysis. Half of the included patients had T2DM diagnosed at baseline, and these patients showed lower serum Mg concentration (0.78 (0.07)) vs. 0.83 (0.05) mmol/L; p = 0.006), higher blood glucose levels (129.9 (41.3) vs. 87.6 (8.1) mg/dL; p < 0.001) as well as HbA1c concentrations (6.7 (1.4) vs. 5.3 (0.5)%; p < 0.001). During follow-up, BMI and glucose levels showed a decrease; however, serum Mg levels remained stable. At baseline 42% of patients were found to be Mg deficient, which was reduced to 33% at six months and to 30% at 12 months follow-up. Moreover, patients with T2DM had an odds ratio of 9.5 (95% CI = 3.0–29.7; p < 0.001) for magnesium deficiency when compared to patients without T2DM. Further research into the role of Mg and its role in T2DM and other obesity-related comorbidities are needed.

Highlights

  • Magnesium (Mg) is the second most abundant intracellular electrolyte serving as a co-factor in over 300 different enzymatic and biochemical reactions responsible for normal functioning of the organism [1,2,3]

  • Studies reported that men with low serum Mg values had a two-fold increase in the incidence of type 2 diabetes mellitus (T2DM), while those in the highest quintile of Mg intake can reduce their diabetes risk by more than 30%

  • As Mg has been linked to a myriad of positive health outcomes [21], and in light of rising trends in global obesity prevalence, our study aimed to investigate changes in serum Mg levels in patients with and without diabetes mellitus who underwent one-anastomosis gastric bypass (OAGB) before and after a 12-month follow-up

Read more

Summary

Introduction

Magnesium (Mg) is the second most abundant intracellular electrolyte serving as a co-factor in over 300 different enzymatic and biochemical reactions responsible for normal functioning of the organism [1,2,3]. It is involved in blood glucose control, given its vital role in activating the beta-subunit of the insulin receptors [4]. Even with the relatively broad distribution of foods containing Mg, studies have indicated that intake of Mg is suboptimal, i.e., not reaching the recommended daily intake [7]. An analysis of nationally representative data from the United States showed that more than 80% of Americans do not meet the recommended daily intake with older

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.