Abstract

ABSTRACTThe self‐assembly process in aqueous solutions of the methoxyl‐poly(ethylene glycol)‐block‐poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic sodium)‐block‐poly(N‐isopropyl acrylamide) (PNIPAAM) triblock copolymer, synthesized via two different atomic transfer radical polymerization methods, namely “one‐pot” (P3‐sample) and “two‐pot” (P2‐sample), was studied by various experimental techniques. The “one‐pot” procedure leads to a copolymer (P3) where the PNIPAAM block is contaminated with a minor quantity of 2‐acrylamido‐2‐methyl‐1‐propane sulfonate (AMPS) residuals and this sample does not form micelles over the considered temperature region, but unimers and temperature‐induced aggregates coexist in the presence of a small amount of salt. The P2 polymer forms micelles and intermicellar structures, but the former moieties disappear at high temperatures, whereas the latter species contract with increasing temperature. Small‐angle neutron scattering results revealed correlation peaks, both for P3 and P2, and no micelle formation for P3, but a pronounced upturn of the scattered intensity at low wavevector values at elevated temperatures for the P2 copolymer. The findings from this study clearly show that the spurious AMPS residuals have a drastic influence on the self‐assembly and micelle formation of the triblock copolymer. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 524–534

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call