Abstract

Global pressure–volume (PV) curves are an adjunct measure to describe lung characteristics in patients with acute respiratory distress syndrome (ARDS). There is convincing evidence that high peak inspiratory pressures (PIP) cause barotrauma, while optimized positive end-expiratory pressure (PEEP) helps avoid mechanical injury to the lungs by preventing repeated alveolar opening and closing. The optimal values of PIP and PEEP are deduced from the shape of the PV curve by the identification of so-called lower and upper inflection points. However, it has been demonstrated using electrical impedance tomography (EIT) that the inflection points vary across the lung. This study employs a simple curve-fitting technique to automatically define inflection points on both pressure–volume (PV) and pressure–impedance (PI) curves to asses the differences between global PV and regional PI estimates in animals before and after induced lung injury. The results demonstrate a clear increase in lower inflection point (LIP) along the gravitational axis both before and after lung injury. Moreover, it is clear from comparison of the local EIT-derived LIPs with those derived from global PV curves that a ventilation strategy based on the PV curve alone may leave dependent areas of the lung collapsed. EIT-based PI curve analysis may help choosing an optimal ventilation strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.