Abstract

The 1st WHO International Reference Reagents (IRRs) for 6 human chorionic gonadotropin (hCG)-related molecular variants, highly purified and calibrated in substance concentrations by the IFCC Working Group for hCG, permit experimental elucidation of what commercially available hCG methods measure in molar terms and enable assessment of their fitness for clinical purposes. Pools containing known amounts of the IRRs spiked into normal human serum were issued to participants through the UK National External Quality Assessment Service for hCG for a period of 7 years. Among 16 assays used, 4 recognized only hCG, whereas 6 recognized hCG and its free beta-subunit (hCGbeta), and 6 recognized hCG, hCGbeta, and the beta core fragment. Differences in calibration of current hCG assays are moderate. Mean recovery of the current International Standard (IS), hCG IS 75/589, was 107% (range 93% to 126%), whereas that of the IRR 99/688 for hCG was 139% (range 109%-164%). Between-method variation for the latter (CV 12.3%) was also greater than for IS 75/589 (CV 8.8%). Recognition of hCGbeta varied markedly (CV 37%). Most assays overestimated it, but 2 RIAs produced results that were slight underestimations. Recognition of the beta core fragment was even more variable (CV 57%) and was closest to equimolarity for the RIAs. Assays for hCG show considerable variation in their recognition of various forms of hCG, and this variability is the most important cause of method-related differences in hCG results in serum and an even more important cause of method-related differences in urine measurements. Equimolar recognition of the major hCG isoforms is essential if between-method comparability for hCG is to be improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.