Abstract

Background: Small animal models have been previously used in transfusion medicine studies to evaluate the safety of blood transfusion products. Although there are multiple studies on the effects of blood banking practices on human red blood cells (RBCs), little is known about the effect of blood component manufacturing on the quality of rat RBCs. Methods: Blood from Sprague-Dawley rats and human volunteers (n = 6) was collected in CPD anticoagulant, resuspended in SAGM or AS3, and leukoreduced. In vitro quality was analyzed, including deformability, aggregation, microvesiculation, phosphatidylserine (PS) expression, percent hemolysis, ATP, 2,3-DPG, osmotic fragility, and potassium concentrations. Results: Compared to human RBCs, rat RBCs had decreased deformability, membrane rigidity, aggregability, and microvesiculation after component manufacturing process. Rat RBCs in SAGM showed higher hemolysis compared to human RBCs in SAGM (rat 4.70 ± 0.83% vs. human 0.34 ± 0.07%; p = 0.002). Rat RBCs in AS3 had greater deformability and rigidity than in SAGM. The number of microparticles/µl and the percentage PS expression were lower in rat RBCs in AS3 than in rat RBCs in SAGM. Hemolysis was also significantly lower in AS3 compared to SAGM (2.21 ± 0.68% vs. 0.87 ± 0.39%; p = 0.028). Conclusion: Rat RBCs significantly differ from human RBCs in metabolic and membrane-related aspects. SAGM, which is commonly used for human RBC banking, causes high hemolysis and is not compatible with rat RBCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.