Abstract

Precipitation related latent heating is important in driving the atmospheric general circulation and in generating intraseasonal to decadal atmospheric variability. Our ability to project future climate change, especially trends in costly precipitation extremes, hinges upon whether coupled GCMs capture processes that affect precipitation characteristics. Our study compares the tropical‐subtropical precipitation characteristics of simulations by the NCAR CAM3.1 atmospheric GCM and observations derived from the NASA Tropical Rainfall Measuring Mission (TRMM) satellite. Despite a fairly good simulation of the annual mean rain rate, CAM rains about 10–50% more often than the real world and fails to capture heavy rainfall associated with deep convective systems over subtropical South America and U.S. Southern Plains. When it rains, there is a likelihood of 0.96–1.0 that it rains lightly in the model, compared to values of 0.84–1.0 in TRMM data. On the other hand, the likelihood of the occurrence of moderate to heavy rainfall is an order of magnitude higher in observations (0.12–0.2) than that in the model (<0.02). Comparison of regionally aggregated PDFs of the rain rate shows that CAM underestimates the probability of NOT raining, overestimates the probability of light rain and almost completely misses the tails of the PDFs. The model compensates for the lack of heavy precipitation through raining more frequently within the light rain category, which leads to an annual rainfall amount close to what is observed. CAM captures the qualitative change of rain rate PDF from a “dry” oceanic to a “wet” oceanic region, but it fails to simulate the change of precipitation characteristics from an oceanic region to a land region where thunderstorm rainfall dominates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.