Abstract
BackgroundUpper limb prostheses likely do not enable movements having the same kinematic characteristics as anatomical limbs. The quality of movements made using body-powered and myoelectric prostheses may further differ based on the availability of sensory feedback and method of terminal device actuation. The purpose of this work was to compare the quality of movements made with body-powered and myoelectric prostheses during activities of daily living. MethodsNine transradial body-powered and/or myoelectric prosthesis users and nine controls without limb loss performed six activities of daily living. Movement quality, defined as duration, straightness, and smoothness, for the reaching and manipulation phases was compared between prostheses, as well as prostheses and anatomical limbs. FindingsThe quality of reaching movements were generally similar between prostheses. However, movements with body-powered prostheses were slower (P = 0.007) and less smooth (P < 0.001) when reaching to a deodorant stick and movements with myoelectric prostheses were slower when reaching to place a pin on a corkboard (P = 0.023). Movements with myoelectric prostheses were slower (P ≤ 0.021) and less smooth (P ≤ 0.012) than those with body-powered prostheses during object manipulation, but these differences were not present for all tasks. Movements with prostheses were slower, more curved, and less smooth compared to those with anatomical limbs. InterpretationDifferences in the quality of movements made with body-powered and myoelectric prostheses primarily occur during object manipulation, rather than reaching. These differences do not exist for all tasks, suggesting that neither prosthesis type offers an absolute advantage in terms of movement quality.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.