Abstract

IntroductionPrevious studies have reported that alignment changes depend on the patient’s position in orthopedic surgery. However, it has not yet been well examined how the patient’s position affects the preoperative planning in high-tibial osteotomy (HTO). Therefore, the aim of this study was to investigate the effects of the patient’s position on preoperative planning in HTO.Materials and methodsA total of 60 knees in 55 patients who underwent HTO were retrospectively examined. Virtual preoperative planning for medial open-wedge HTO (OWHTO), lateral closed-wedge HTO (CWHTO), and hybrid CWHTO were performed by setting the percentage of the weight-bearing line (%WBL) at 62% as an optimal alignment. The correction angle differences between the supine and standing radiographs were measured. The virtual %WBL (v%WBL) was determined by applying the correction angle obtained from the standing radiograph to the supine radiograph. The %WBL discrepancy (%WBLd) was calculated as v%WBL − 62 (%) to predict the possible correction errors during surgeries. A single regression analysis was performed to examine the correlation between the correction angle difference and %WBLd.ResultsThe mean correction angle was significantly higher when the preoperative planning was based on standing radiographs than when based on supine radiographs (P < 0.001), and the mean difference was 2.2 ± 1.5°. The difference between the two conditions in the medial opening gaps for OWHTO, lateral wedge sizes (mm) for CWHTO, and hybrid CWHTO were 2.6 ± 2.0, 2.3 ± 1.6, and 1.9 ± 1.4, respectively. The mean v%WBL was 71.2% ± 7.3%, and the mean %WBLd was 10.1% ± 7.4%. A single regression analysis revealed a linear correlation between the correction angle difference and %WBLd (%WBLd = 4.72 × correction angle difference + 0.08). No statistically significant difference in the parameters was found between the supine and standing radiographs postoperatively.ConclusionsWe found significant differences in the estimated correction angles between the supine and standing radiographs in the planning for HTO. Therefore, surgeons should carefully consider the difference between supine and standing radiographs and estimate the possible correction error during surgery when planning a HTO.

Highlights

  • Previous studies have reported that alignment changes depend on the patient’s position in orthopedic surgery

  • We found significant differences in the estimated correction angles between the supine and standing radiographs in the planning for high-tibial osteotomy (HTO)

  • Surgeons should carefully consider the difference between supine and standing radiographs and estimate the possible correction error during surgery when planning a HTO

Read more

Summary

Introduction

Previous studies have reported that alignment changes depend on the patient’s position in orthopedic surgery. Various preoperative planning methods using picture archiving and communication systems (PACS), digital planning software, and computed tomography for three-dimensional planning have been reported [12,13,14,15,16,17] These new planning techniques can improve the accuracy of the bony correction in HTO, the effects of soft-tissue laxity have not been previously addressed. Several previous studies have reported that the alignment changes depend on several conditions such as the supine position, double-leg standing, and single-leg standing [21,22,23,24]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call