Abstract

Epoxyeicosatrienoic acids (EETs) are readily incorporated into phospholipids of smooth muscle cells (SMC) and endothelial cells (EC). Incorporation of EETs into intact porcine coronary arteries potentiates EC-dependent relaxation, but not vasorelaxation induced by agents that act solely on SMC. To explore the potential mechanisms responsible for this difference, porcine coronary artery SMC and EC preloaded with [ 3 H ]14,15-EET were treated with calcium ionophore A23187. Although the amount of EET incorporated into EC and SMC was similar, A23187 stimulated a five-fold increase in release of radioactivity from EC, but only a 21% increase in release from SMC. Thin layer chromatography (TLC) examination of cell lipids demonstrated that >70% of the incorporated radioactivity was present in phosphatidylcholine (PC) in both SMC and EC. After treatment of EC PC with PLA 2, TLC analysis indicated that ≅75% of radioactivity was present as free EET, and 25% of radioactivity was present as lyso-PC. Therefore, most of the 14,15-EET was esterified into the sn-2 position of PC in EC. However, in SMC, ≅70% of radioactivity was present as lyso-PC after PLA 2 treatment, indicating that the EET was predominately esterified into the sn-1 position. In contrast, all of the 14,15-EET was esterified into the sn-2 position of PI in both EC and SMC. These results suggest that the preferential incorporation of 14,15-EET into the sn-1 position of PC in SMC may help to explain the greater retention of the compound in SMC, while incorporation into the sn-2 position of PC in EC may facilitate agonist-induced 14,15-EET release and potentiation of EC-dependent porcine coronary artery relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.