Abstract

Due to global warming and the increase in nitrogen oxide emissions, plants experience drought and nitrogen (N) deposition. However, little is known about the acclimation to drought and N deposition of Salix species, which are dioecious woody plants. Here, an investigation into foliar N deposition combined with drought was conducted by assessing integrated phenotypes, phytohormones, transcriptomics, and metabolomics of male and female Salix rehderiana. The results indicated that there was greater transcriptional regulation in males than in females. Foliar N deposition induced an increase in foliar abscisic acid (ABA) levels in males, resulting in the inhibition of stomatal conductance, photosynthesis, carbon (C) and N accumulation, and growth, whereas more N was assimilated in females. Growth as well as C and N accumulation in drought-stressed S. rehderiana females increased after N deposition. Interestingly, drought decreased flavonoid biosynthesis whereas N deposition increased it in females. Both drought and N deposition increased flavonoid methylation in males and glycosylation in females. However, in drought-exposed S. rehderiana, N deposition increased the biosynthesis and glycosylation of flavonoids in females but decreased glycosylation in males. Therefore, foliar N deposition affects the growth and drought tolerance of S. rehderiana by altering the foliar ABA levels and the biosynthesis and modification of flavonoids. This work provides a basis for understanding how S. rehderiana may acclimate to N deposition and drought in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call